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Accounts of  the energy fluctuations of a thermodynamic system described by  a 
canonical ensemble usually only deal with the second and occasionally with the 
third moment.  This paper examines the n th moment  for general values of n, with 
particular emphasis  on the asymptotic limits in which either n or the particle 
number  N or both become large. 

1. INTRODUCTION 

Expositions of the theory of the canonical ensemble customarily in- 
clude accounts of the energy fluctuations of a thermodynamic system K 
represented by such an ensemble. Specifically it is shown that the second 
moment J2, that is, the mean square deviation of the energy H from its 
mean is given by 

j 2 : = ( ( / 4 -  u)2) = ( v 2 ) -  v 2 =kr2C (1) 

Here ensemble means are indicated by broken brackets, U: = ( H )  is the 
thermodynamic energy of K and C is its specific heat at constant deforma- 
tion coordinates. Concomitantly the root mean square deviation of  H from 
its mean U is 

a2: = Jzl/2 = T( kC) t/2 (2) 

and the relative root mean square deviation is 

o2*: = o2/U (3) 
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In particular, when the energy of K is directly proportional to T, i.e., w h e n  
U= CT (C =const), °2* is constant: 

° 2 * = ( k / C )  I/2 (4) 

For example, a nonrelativistic assembly of N rigid, mutually noninteracting 
particles has the property in question and it has C = uk, where p = ½N(3 -+ i), 
i (=0,2,  3) denoting the number of rotational degrees of freedom o f  a 
particle. In this case (4) reduces to 

°2* = (s) 

Occasionally (for example, Pathria, 1972) the "cubic analogs" of (1)-(5) are 
also considered, J 3 : = ( ( H - U )  3) being exhibited as a function of  C, 
OC/OT, and T from which it then follows that under the conditions in which 
(5) obtains 

°3": = IJ31 /3/f = (2/ 2)1/3 (6) 

It would seem to be of interest to investigate the general case, that i s  to 
say, the nth moment 

J.:  = ( ( H -  U)")  (7) 

n-----0, 1,2, 3 . . . .  and, where appropriate, the concomitant quantities 

o.:=ILII/., (8) 

To this end, after introducing a generating function for the J, in Section 2,  a 
recurrence relation for the J, is found in Section 3 with the aid of which the 
J. may be obtained recursively. The case of particular interest in which 
U = pkT(=--~,/fl) is considered generically in Section 4. Certain interesting 
polynomials j ,0 ,)  appear which are examined at some length in Section 5. 
Section 6 deals with various asymptotic limits: (i) 1, ~ oo, n fixed, (i_i) n ~ oo, 
p fixed, (iii) n ----, oo, ~,/n fixed, the results obtained constituting one of the 
main objectives of this paper. In Section 7 general energy functions are 
considered, first under the assumption that they are regular in the range of 
temperatures of interest and then, briefly, when irregular behavior is ad-  
mitted. 
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2. GENERATING FUNCTION FOR THE J,, 

One has, directly from the definition (7), 

Jn = ~ (-,)r(~)un-r<Hr> (9) 
r = O  

If Z stands for the partition function or the sum over states, as the case 
may be, 

< Z-l'>= (lO) 

In particular, 

u = - z ' / z  (ii) 

primes denoting derivatives with respect to ft. Hence ( H  r> and therefore Jn 
express themselves in terms of the derivatives of U alone. However, the 
process of finding the explicit expressions for the J~ by inserting (,0) in (9) 
contains much redundancy in the sense that a very large number of terms 
which appear on the right of (10) eventually mutually cancel from the sum 
on the right of (9). For this and other reasons it is better to proceed as 
follows. Define 

o~ 

J:= E (-')nJ~xVnI (12) 
n = 0  

where x is an auxiliary variable. Then, using (7) on the right, 

j=(e-X(n-u))=e~U(e -~n) 

Therefore, by inspection 

J= eXU(#)Z(fl + x)/Z(fl) (,3) 

By means of (I I) this may be written in terms of U alone: 

J =exp[ xU( fl ) -  foXU( t + fl ) dt] (14) 
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Writing U(t + r)  as a series in ascending powers of t, one also has 

J = e x p ( -  ~ gs_lXs/s[) ( 1 5 )  
s=2 

where Us: = (O/OB)'U(B). 

3. RECURRENCE RELATION: J~ FOR 2<  n ~<8 

Differentiating In J, as given by (14), alternatively with respect to  fl 
and x one obtains the relation 

oJ /oB-  o:/Ox = xU, J 

Inserting for J the series (12). there follows the recurrence relation 

J . + , = -  J~,- nU, J._, (16) 

Use of this leads easily to the following explicit expressions, starting with  
Jo=l ,  J, =0: 

J2 -- --  UI, J3 = U2, J4=-U3-I-3UI 2 

Js-~'U4--1OUIU2' J6-~'-U5~-15UIU3 ~- lOU22-15UI3 ( 1 7 )  

Jv = U6 -21UtU4 -35UzU3 + 105UlZUz 

J8 : - U 7  + 28UtU5 + 56U2U4 "~- 35U32 -- 210UI2U3 - 280UtU22 + 105Ul 4 

and so on. The J. thus appear explicitly as functions of the derivatives o f  U 
alone. For general n some results concerning the expression for J. will be 
found in Section 7. 

4. THE CASE U = v/E: GENERIC RESULTS 

So far everything has been general: the only condition which has  
implicitly been imposed being that the various derivatives of U should in 
fact exist. At this point is is of advantage to deal at some length wi th  a 
particular case, namely, when U = ~,/fl, where p is a constant. The energy of 
a classical (nonrelativistic) ideal gas has this form (cf. Section 1) as has the 
extreme-relativistic Maxwell-Jiittner gas. for which p = 3N. 
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Equation (14) now takes the explicit form 

with ~: = x/ft. Evidently 
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(18) 

L = L/8-"  (19) 

wherej,  is a constant factor. [When its dependence on v requires emphasis I 
shall writej,(v) for it.] Inserting (19) in (16), one finds that the j ,  satisfy the 
linear recurrence relation 

L+I =n(.~ + vJ,-t) (20) 

The quantities %* defined earlier are here independent of/8. In fact, 

o,,*(v)=v-l[j,(v)] '/" (21) 

5. THE POLYNOMIALSj.(v)  

Since £ = 1 and Jl =0  the polynomials j,(v) may be generated recur- 
sively from (20). Thus 

j2=v, j3=2v ,  j4 =6v+3v 2, j s = 2 4 p + 2 0 v  2 

j6=120v+130v2 +15v 3, jv=720~,+924p2+210v3 

J8 = 5040v +7308v 2 +2380v 3 + 105v 4 (22) 

and so on. That these are correct may be verified by substitution in the 
relation 

r=O 

which follows directly from (18). Again, formally setting i, = - 1 in (18), one 
infers that j , ( -  I )=  1 - n, in harmony with (22). 

An integral representation for j,(v) may be obtained by writing the 
factor (1 + ~)-P in (18) as [F(v)]-If~°t"-le-°+°tdt. Thus 

) = f f r - ' ( t  - t., ) "  e -tart (24) 
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By splitting the range of integration at t = v it follows that 

F(v)jn(v)= v"+~[ f°~t~-l(t--1)"e-pt dt +(--1)n foltV-l(1-- t )ne-~t dt] 

(ZS) 

a result which will prove useful later. One remarkable special case of this 
(Abramowitz and Stegun, 1970) deserves special mention: 

- 1  ! j._l(n)=~r-'/Zn"-'/2e-"/Z[K._,/z(½n)+(-1)" IrI._,/2(~n)] (26) 

where lr and K~ are modified Bessel functions of the first and second k ind  
which are here, of course, just those which are in fact elementary functions. 
More generally, the integrals in (25) are familiar from the theory of 
confluent hypergeometric functions (e.g., reference 2, p. 505). However, 
upon introducing them explicitly one is faced with quite awkward manipula- 
tions. In any event, elementary methods are more suited to our purpose and  
they suffice for its attainment. 

First, by writing both factors on the right of (18) as power series, one  
infers that 

j , ( v ) =  ~ (--1)~(n)q,,_~(v)v ~ (27) 
r = 0  

where qr(v) = F(r + v)/F(v). G(v) is a polynomial of degree r in v which 
can be written out explicitly in terms of Stirling numbers of the first kind. 
This does not seem to be useful since according to (27)j.(v) superficially has 
the appearance of being a polynomial of degree n. whereas it is in fact of 
degree m = [½ n ]: = integral part of ½ n. Thus 

j.(,)= E jj*  (28) 
k = l  

This may be inserted into (20) to obtain recursion relations for thejn~: 

j.+,,k=n(jnk+j._,,k_l), k > l  (29) 

and j .  1 = (n  - 1)! Then 

n--2 n--2 k--2 

j.2 = ( n  --1)! ~,, l/j, J . 3 = ( n - - 1 )  ! E E 1/jk (30) 
j = 2  k = 4 j = 2  
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and so on. This  method  is, however,  not  suitable for getting the descending  
sequence of  coefficients Jnm, Jn,m--1 .... owing to the need n o w  to dis- 
t inguish generically between even and odd values of  n: one has in effect  two 
interrelated recursion relations which are not  easily dealt  with. I t  is far  
easier to proceed as follows. I f  w: = £ --ln(1 + £), 

J = e  ~w= ~=o vp ( - ~ )  / s  / p !  (31) 
p s = 2  

After  writ ing w p explicitly as a series in ascending powers  of  ~, select f rom 
the terms with p = m, m - 1 . . . .  in turn the factors mult iplying ~n; and  these 
are just  Jnm, in, m--I . . . . .  respectively. In  this way one finds that, when  n is 
even 

Jnm=n!/2mm!, j,,,,,,-, =~n(n--2)(2n+l)Jnm 

when n is odd,  

jnr .=½(n! ) /2" - ' (m-- l ) ! ,  j...,_l=5-g~(n--3)(lOn2+15n--1)jnm 

(32) 

and so on. When  n >> I j..., _ 1/J.,. = O(n3) and it is not  difficult to convince 
oneself  thatjn,,._2/jn,m_ l is likewise O(n3), and so on. 

6. A S Y M P T O T I C  R E S U L T S  

It  is of  interest to examine the asymptot ic  fo rm of in(v) and its 
concomi tan t  %* under  various circumstances.  

(a) p Large,  n Fixed. For  fixed n the dominant  term o f jn (v  ) is any m, 
where an: = Jnm, if only v is sufficiently large. Thus, bear ing in m i n d  the 
results ob ta ined  at the end of Section 5, 

jn(V)=ee,,v'[l+O(nS/v)] 

and therefore, as v --, oo with n fixed, 

v - l ~ 2  
en* ~ Otn I/n X 

v-1/2(1 + l / n )  

(33) 

n even) 
(34) 

(n odd)  
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When n is also large, i.e., 

1 << n << ~,l/3 

Stirling's fo rmula  may  be used to find the asymptot ic  fo rm of a,,~/': 

(35) 

a l/,_(n/e)l/z×{]+O(n-' ), n e v e n  

+O(n-qnn) ,  n odd 
(36) 

Retaining explicitly only the leading term it follows that subject to (35) 

o,*(t,)-( n /ev) l/z ( 3 7 )  

(34) and (37) are reievant when one contemplates  a macroscopic  s a m p l e  of 
an ideal gas, say one mole, for then the condit ion n3/v << 1 merely r equ i re s  n 
to be small compared  with 108 . 

(h) n Large,  v Fixed. Writ ing out the series on the right of  (27)  
explicitly, one recognizes by inspection that  when n ~ oo with ~ fixed 

r(,')j.O')-r(n+p)e-"(l+a,.-'+a2n-'+ ".) (38) 

where a k is a polynomial  of  degree 2k  in ~,. The a k may  be d e t e r m i n e d  
recursively by  substi tuting (38) in (20). Thus 

a , = p ( v - - 1 ) ,  a2=½P(v--1)(v2--4t,+2) .... (39) 

It  may  be noted that  when i, = 1 all the a k vanish. This means  that  fn = n ! / e  
is an exact solution of the difference equat ion f .  + 1 = n ( f .  + fn - 1)- H o w e v e r ,  
the general solution of this second-order  equat ion is 

f , = ( n ! )  A + B  ~ ( -Or~r !  (,40) 
r = n + l  

and in the present  context  the arbi t rary constants  A and B are d e t e r m i n e d  
by  the initial condit ions f0 = 1, fl  = 0, i.e., A = e - ~, B = - 1. This r e su l t  is 
not  in conflict  with (38) since the second term on the tight of  (40)  is 
o(1 / (n  + 1)!). 

Beating in mind that  n >> l, F(n + p) m a y  be replaced by the l ead ing  
te rm of Stirling's formula,  so that  

r(p)j.(p)-(2~)~/2n"+"-'/2e-"-" (41) 
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Therefore, subject to v 2 << n, 
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%*(u)~n/ev (42) 

(e) n and s, Comparable. Suppose now that p = )~n, where 2~ is a fixed 
number. To findj,()~n) when n --, ~ the preceding methods fail. In this case 
one may appeal to (25) directly, using the following well-known result 
(Erdelyi, 1956). If f ( t )  has one steep minimum at t = t o (a < t o < b)  then 

fabe -/(') dt~ e-/('o)[27r/f"( to)] 1/2 (43) 

Here 

f (  t ) = )~nt - -  ( )~n - -  1 ) l n  t - -  nlnlt - 11 (44) 

For large values of n each of the integrands in (25) has just one steep 
minimum within the respective ranges of integration: 

t o=  1+ [1---(4~k + 1)t/2]/2)~ + O(n-') (45) 

the upper and lower signs referring to the first and second integral, 
respectively. Then the second integral is negligible compared with the 
first. If 

c:=½[1+(1+4)~) I/2] (46) 

(45) becomes correctly to O(n--2) 

to=[C/(C--1)]-- n - ' / [ ( c - - 1 ) ( 2 c ~  1)] (47) 

This value of t is now to be substituted on the fight of (43). Using the usual 
asymptotic formula for F(~,n), one obtains the result 

Hence 

jn(Xn)--[(c--1)/(2c--1)]'/Z(c[c/(c--l)]C(~-')e-~n} " (48) 

%*(kn)~(c--1)-l[c/(c - 1)] c(c-t) e_C (49) 
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In particular, 

an*(n)~(l+20)e -°  (50) 

where O is the "golden ratio" ½(1 +¢5). 
Remark. In the limits • -, oo and ?t --, 0 (49) reduces exactly to (37) a n d  

(42), respectively. One suspects that on*(u ) is asymptotically represented by 
the right-hand member of (49) for all values of p and n when both are 
sufficiently large. This conjecture is borne out by the results of explicit 
calculation. 

7. MORE GENERAL ENERGY FUNCTIONS 

The preceding three sections have concerned themselves with the  
particular case U = ~,//3. Going on to more general energy functions, it will 
be required for the time being that for any given value of/3 of interest the  
function U(/3) is analytic within and on a circle F of radius R(fl) with/3 as 
center. 

If, as before, N is the number of distinct systems ("particles") which 
constitute the assembly, U is proportional to N in the thermodynamic limit. 
For any realistic macroscopic assembly--which alone I consider now--  N is 
very large indeed compared with unity and it is legitimate to take U =  O(N) .  
Accordingly write U =  :Nu and I~l--:Nu,, with u = O(1) and u, = O(1). 

To find the dominant terms of Jn one may proceed as after (31): 

oo oo 

E (-  l)"Lx"/n != E ( -  1)'wl,/p! (5 1) 
n = 0  p = 0  

where now 

oo 
s ! w : =  Y~ ~_,x/~. 

s-----2 

Write 

w,=(½v:x~)" ~ cXe)xr (52) 
r = O  

so that, for example, c l ( p ) = p  U 2/3U v By inspection one thus arrives at the 



Energy Fluctuations 379 

following results: 
(i) when n is even, 

Jn=(-1) 'an(u,n '-7~n(n-2)uin '-3[3U, U3 +(n-4)UzZ]+ . . .  ) (53) 

(ii) when n is odd, 

Jn=( - \ m + l  r 1 m--1 -- 1) antTU 1 V2 --2t-~6(n --3)UI m-4 

Evidently the 

[45(n -5)UIU2U 3 +5(n  - 5 ) ( n  -7)U23 + 54uxZu4] + " "  } 

(54) 

successive group of terms are in each case O(N"), 
O(N m-1), O( N m- 2) . . . . .  SO that when N is sufficiently large each sequence 
is dominated by its first term. Therefore, as N--, oo, with n and/3 fixed, 

f N  - 1 / 2 ,  n even  
~n*(B )~ ~nl/n( U,I U 2 )I/2 × ~ (¼u22/,, 3)1/2n N - , ,  + , / .~ /2  (55) 

which may be compared with (34). If n is itself large but not too large (see 
below) 

an*( fl )~(  nul/eU2N ) l/2 (56) 

cf. (37). 
It remains to investigate the conditions which N and n must satisfy if 

the right-hand members of (55) and (56) are to be adequate approximations 
to o,*(fl). Accordingly, let the upper bound of u on F be/~(fl). Then by 
Cauchy's inequality 

us~(s!) ,R -s (57) 

Taking n even, n > 2, if p is the magnitude of the ratio of the second term to 
the first on the right of (53), it follows that 

Hence p << 1 provided 

/9 < PI: = ~n3(IX2Ul3R4)N -I (58) 

n3/N << 18R4u13//~ 2 (59) 
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When n is odd one may deal with (54) in much the same way. The condi t ion 
analogous to (59) turns out to be 

n3/N <<27Rfu13u2//,tt 3 (60) 

It is convenient to have an inequality which covers the cases of even and 
odd n simultaneously. Accordingly, weaken (58) by multiplying its r ight-hand 
member by R2uz/2# < 1. Then for any n >2,  p << 1 when 

n<<rlNt/3, rl3:=9R61z-3ul3uz (61) 

This is thus a necessary condition for the right-hand member of (55) t o  be 
an adequate approximation of on*(fl). Presumably it is also sufficient, but 
to establish this in generality would not be easy. It is, however, worth2¢ of 
remark that the ratio of the magnitude of the third term on the fight of (54) 
to that of the first is less than 1012. 

AS regards the transition from (55) to (56), one has to have n >> ½ In N if 
the factor N-~/2n is to be negligible. Satisfaction of this condition ens~ures 
at the same time that (n /e)  1/2 be a sufficiently good approximation of 
a~ I/'. There remains the condition [½ In(u22/4ul 3)[ << n. The left-hand mem-  
ber being independent of N, conflict with (61) will not arise if only zN is 
sufficiently large: 

When using (61) one will aim at the largest possible value of 7/. In any 
particular case one will therefore find/~ as a function of R and then choose 
that value of the latter which maximizes RZ/~. For example, when u is 
proportional to f l -x ,  with 2~ a positive constant, R2/# is proport ional  to 
Rz(B - R) x, so that the most favorable value of R is then 2/~/(k +2). 

When the assumption of regularity is relaxed the results so far obta ined 
in this section generally become irrelevant in a neighborhood of any value  
tic of fl at which the behavior of U is pathological. What one usually en- 
counters in practice is this: for some positive integer r, the derivatives o f  U 
beyond the r th  are unbounded as e:=lflc-fl[--,O. In that case, vehen 
n > r + 1, J. will be dominated by the last term ( -  1)" -1U. _ l on the r ight  of 
(53), (54) if only e is sufficiently small; so that then I J . ] ~  Nu n_ i. When,  
specifically, C is proportional to e -x,  where ~ is a positive constant (cf. 
reference 1, p. 432), it turns out that 

o * ( f l )~y (n ) (N- ' e - ( z - x ) )  0 - ' / ' ) ,  e-oO (62) 
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The factor -/(n) depends on n alone and is proport ional  to n when n is 
sufficiently large. No  matter  how large N may be, on*(/~ ) diverges as /3  ~/~c- 
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